1. Gupta, R., Beg, Q.K. and Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches
and industrial applications. Appl. Microbiol. Biot 59, 15-32.
2. Masui, A., Yasuda, M., Fujiwara, N. and Ishikawa, H. (2008). Enzymatic hydrolysis of gelatin
layers on used lith film using thermostable alkaline protease for recovery of silver and PET film.
Biotechnol. Progr, 20, 1267-1269.
3. Demain, A.L. and Adrio, J.L. (2008). In Natural Compounds as Drugs Volume I. Springer, in
press., pp. 251-289.
4. Rao, M.B., Tanksale, A.M., Ghatge, M.S. and Deshpande, V.V. (1998). Molecular and
biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. R 62, 597-635.
5. Joo, H.S., Kumar, C.G., Park, G.C., Kim, K.T., Paik, S.R. and Chang, C.S. (2002). Optimization
of the production of an extracellular alkaline protease from Bacillus horikoshii. Process.
Biochem, 38, 155-159.
6. Kumar, C.G. and Takagi, H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint.
Biotechnol. Adv, 17, 561-594.
7. Wang, Q., Hou, Y., Xu, Z., Miao, J. and Li, G. (2008). Optimization of cold-active protease
production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface
methodology. Bioresource. Technol, 99, 1926-1931.
8. Armstrong, N.A. (2006). Pharmaceutical experimental design and interpretation. CRC Press,
London.
9. Singh, S.K., Singh, S.K., Tripathi, V.R., Khare, S.K. and Garg, S.K. (2011). Comparative onefactor-
at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of
thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate.
Microb. Cell. Fact, 10, 114.
10. Liu, S., Fang, Y., Lv, M., Wang, S. and Chen, L. (2010). Optimization of the production of
organic solvent-stable protease by Bacillus sphaericus DS11 with response surface methodology.
Bioresource. Technol, 101, 7924-7929.
11. Oskouie, S.F.G., Tabandeh, F., Yakhchali, B. and Eftekhar, F. (2008). Response surface
optimization of medium composition for alkaline protease production by Bacillus clausii.
Biochem. Eng. J, 39, 37-42.
12. Pillai, P., Mandge, S. and Archana, G. (2011). Statistical optimization of production and tannery
applications of a keratinolytic serine protease from Bacillus subtilis P13. Process. Biochem, 46,
1110-1117.
13. Rao, Y.K., Lu, S.-C., Liu, B.-L. and Tzeng, Y.-M. (2006). Enhanced production of an
extracellular protease from Beauveria bassiana by optimization of cultivation processes.
Biochem. Eng. J 28, 57-66.
14. Reddy, L., Wee, Y.-J., Yun, J.-S. and Ryu, H.-W. (2008). Optimization of alkaline protease
production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface
methodological approaches. Bioresource. Technol, 99, 2242-2249.
15. Thys, R., Guzzon, S.O., Cladera-Olivera, F. and Brandelli, A. (2006). Optimization of protease
production by Microbacterium sp. in feather meal using response surface methodology. Process.
Biochem, 41, 67-73.
16. Fakhfakh-Zouari, N., Haddar, A., Hmidet, N., Frikha, F. and Nasri, M. (2010). Application of
statistical experimental design for optimization of keratinases production by Bacillus pumilus A1
grown on chicken feather and some biochemical properties. Process. Biochem, 45, 617-626.
17. Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, M. and Kamoun, A.S. (2010).
Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21
using hulled grain of wheat and sardinella peptone. J. Biosci. Bioeng 110, 288-294.
18. Rabbani, M., Bagherinejad, M.R., Sadeghi, H.M., Shariat, Z.S., Etemadifar, Z., Moazen, F.,
Rahbari, M., Mafakher, L. and Zaghian, S. (2013). Isolation and characterization of novel
thermophilic lipase-secreting bacteria. Braz. J. Microbiol 44, 1113-1119.
19. Mukherjee. A. K and K., R.S. (2011). A statistical approach for the enhanced production of
alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp.
strain AS-S20-I. New. Biotechnol, 28, 182-189.
20. Garciacarreno, F., Dimes, L. and Haard, N. (1993). Substrate-gel electrophoresis for composition
and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem, 214,
65-69.
21. Arulmani, M., Aparanjini, K., Vasanthi, K., Arumugam, P., Arivuchelvi, M. and Kalaichelvan,
P.T. (2007). Purification and partial characterization of serine protease from thermostable
alkalophilic Bacillus laterosporus-AK1. World. J. Microb. Biot 23, 475-481.
22. Hübner, U., Bock, U. and Schügerl, K. (1993). Production of alkaline serine protease subtilisin
Carlsberg by Bacillus licheniformis on complex medium in a stirred tank reactor. Appl.
Microbiol. Biotechnol., 40, 182-188.
23. Maurer, K.-H. (2004). Detergent proteases. Curr. Opin. Biotech 15, 330-334.
24. Rai, S.K. and Mukherjee, A.K. (2011). Optimization of production of an oxidant and detergentstable
alkaline β-keratinase from Brevibacillus sp. strain AS-S10-II: Application of enzyme in
laundry detergent formulations and in leather industry. Biochem. Eng. J 54, 47-56.
25. Kumar, C. (2002). Purification and characterization of a thermostable alkaline protease from
alkalophilic Bacillus pumilus. Lett. Appl. Microbiol 34, 13-17.
26. Huang, Q., Peng, Y., Li, X., Wang, H. and Zhang, Y. (2003). Purification and characterization of
an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr.
Microbiol, 46, 0169-0173.
27. Miyaji, T., Otta, Y., Nakagawa, T., Watanabe, T., Niimura, Y. and Tomizuka, N. (2006).
Purification and molecular characterization of subtilisin‐like alkaline protease BPP‐A from
Bacillus pumilus strain MS‐1. Lett. Appl. Microbiol, 42, 242-247.