Aggregation of adult and fetal hemoglobin by ingested nitrate anions

Document Type: Research Paper

Authors

1 Laboratory of Microanalysis, Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tnarhe, Iran

2 Laboratory of Microanalysis, Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tnarhe, Iran; and Research Institute of Applied Science, Academic Center of Education, Culture and Research (ACECR), University of Shahid Beheshti, P.O. Box ,Tehran, Iran

Abstract

The ingested nitrates sourced from tap water, food, chemicals and pharmaceuticals are
converted to nitrites in the body surfaces by bacteria and then, the nitrite ions can lead the
structural changing in hemoglobin. In the present work, aggregation of the purified hemoglobin
in adult (HbA) and in fetus or newborn (HbF) in the presence of nitrite ions were studied.
Hemoglobin aggregation was performed chemically in the presence of 10 mg/l nitrite ions and
examined by UV-Vis spectrophotometer at 360 nm wavelength. The extrinsic fluorimetric
measurements indicated that repulsive electrostatic interaction between nitrite anions and
negative charged groups of both types of HbA and HbF molecules leads to expose the
hydrophobic patch of the protein molecules. Moreover, the α-helix to β-strand transition in both
types of hemoglobins shown by circular dichroism support aggregation process among this
protein. However, at natural pH, the protonated amino group of Gly in HbF tends to bind to
nitrite anions more than the unprotonated forms of Val residue in HbA. The drastic slop of
aggregation plot and shorter lag time of HbF relative to HbA demonstrated more aggregation of
former protein.

Keywords

Main Subjects


1. A. Dong, T.W. Randolph, J.F. Carpenter, Entrapping intermediates of thermal aggregation in α-
helical proteins with low concentration of guanidine hydrochloride, J. Biol. Chem., 275 (2000)
27689-27693.
2. X. Zhu, A.K. Raina, G. Perry, M.A. Smith, Alzheimer's disease: the two-hit hypothesis, The
Lancet Neurology, 3 (2004) 219-226.
3. M. Baba, S. Nakajo, P.-H. Tu, T. Tomita, K. Nakaya, V. Lee, J.Q. Trojanowski, T. Iwatsubo,
Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia
with Lewy bodies, The American journal of pathology, 152 (1998) 879.
4. C. Olanow, W. Tatton, Etiology and pathogenesis of Parkinson's disease, Annu. Rev. Neurosci.,
22 (1999) 123-144.
5. J. Buxbaum, G. Gallo, Nonamyloidotic monoclonal immunoglobulin deposition disease: lightchain,
heavy-chain, and light-and heavy-chain deposition diseases, Hematol. Oncol. Clin. North
Am., 13 (1999) 1235-1248.
6. J.N. Buxbaum, J.V. Chuba, G.C. Hellman, A. Solomon, G.R. Gallo, Monoclonal
immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and
their relation to light chain amyloidosis: clinical features, immunopathology, and molecular
analysis, Ann. Intern. Med., 112 (1990) 455-464.
7. A.L. Fink, Protein aggregation: folding aggregates, inclusion bodies and amyloid, Fold. Des., 3
(1998) R9-R23.
8. R. Wetzel, B.A. Chrunyk, Inclusion body formation by interleukin-1β depends on the thermal
sensitivity of a folding intermediate, FEBS Lett., 350 (1994) 245-248.
9. A.M. Morris, M.A. Watzky, R.G. Finke, Protein aggregation kinetics, mechanism, and curvefitting:
a review of the literature, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,
1794 (2009) 375-397.
10. J.S. Philo, T. Arakawa, Mechanisms of protein aggregation, Curr. Pharm. Biotechnol., 10 (2009)
348-351.
11. D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry, Macmillan, 2008.
12. S. De, A. Girigoswami, A fluorimetric and circular dichroism study of hemoglobin—Effect of pH
and anionic amphiphiles, J. Colloid Interface Sci., 296 (2006) 324-331.
13. A. Stephens, M. Angastiniotis, E. Baysal, V. Chan, B. Davis, S. Fucharoen, P. Giordano, J.
Hoyer, A. Mosca, B. Wild, ICSH recommendations for the measurement of Haemoglobin F, Int.
J. Lab. Hematol., 34 (2012) 14-20.
14. A.N. Schechter, Hemoglobin research and the origins of molecular medicine, Blood, 112 (2008)
3927-3938.
15. J. COTTER, H. PRYSTOWSKY, Fetal Blood Studies: XIX. Adult and Fetal Hemoglobin Levels
of Human Fetal Blood in Term Pregnancy and in Prolonged Pregnancy, Obstet. Gynecol., 22
(1963) 745-750.

16. E. Lissi, Autocatalytic oxidation of hemoglobin by nitrite: a possible mechanism, Free Radic.
Biol. Med., 24 (1998) 1535-1536.
17. N.E. Camp, Methemoglobinemia, J. Emerg. Nurs., 33 (2007) 172-174.
18. J.O. Lundberg, E. Weitzberg, M.T. Gladwin, The nitrate–nitrite–nitric oxide pathway in
physiology and therapeutics, Nature Reviews Drug Discovery, 7 (2008) 156-167.
19. N.G. Hord, Y. Tang, N.S. Bryan, Food sources of nitrates and nitrites: the physiologic context for
potential health benefits, The American journal of clinical nutrition, 90 (2009) 1-10.
20. R.P. Smith, The blue baby syndromes, Am. Sci., 97 (2009) 94-96.
21. A. Keszler, B. Piknova, A.N. Schechter, N. Hogg, The Reaction between Nitrite and
Oxyhemoglobin A MECHANISTIC STUDY, J. Biol. Chem., 283 (2008) 9615-9622.
22. S. Muntoni, P. Cocco, S. Muntoni, G. Aru, Nitrate in community water supplies and risk of
childhood type 1 diabetes in Sardinia, Italy, Eur. J. Epidemiol., 21 (2006) 245-247.
23. A. Coss, K.P. Cantor, J.S. Reif, C.F. Lynch, M.H. Ward, Pancreatic cancer and drinking water
and dietary sources of nitrate and nitrite, Am. J. Epidemiol., 159 (2004) 693-701.
24. J.O. Lundberg, M. Carlström, F.J. Larsen, E. Weitzberg, Roles of dietary inorganic nitrate in
cardiovascular health and disease, Cardiovasc. Res., 89 (2011) 525-532.
25. A. Riggs, [1] Preparation of blood hemoglobins of vertebrates, Methods Enzymol., 76 (1981) 5-29.
26. T. Yagami, B.T. Ballard, J.C. Padovan, B.T. Chait, A.M. Popowicz, J.M. Manning, N-terminal
contributions of the γ-subunit of fetal hemoglobin to its tetramer strength: Remote effects at
subunit contacts, Protein Sci., 11 (2002) 27-35.
27. P.S. Santiago, F. Moura, L.M. Moreira, M.M. Domingues, N.C. Santos, M. Tabak, Dynamic light
scattering and optical absorption spectroscopy study of pH and temperature stabilities of the
extracellular hemoglobin of Glossoscolex paulistus, Biophys. J., 94 (2008) 2228-2240.
28. J. Badraghi, A.A. Moosavi-Movahedi, A.A. Saboury, R. Yousefi, A. Sharifzadeh, J. Hong, T.
Haertlé, A. Niasari-Naslaji, N. Sheibani, Dual behavior of sodium dodecyl sulfate as enhancer or
suppressor of insulin aggregation and chaperone-like activity of camel αS 1-casein, Int. J. Biol.
Macromol., 45 (2009) 511-517.
29. J. Badraghi, R. Yousefi, A.A. Saboury, A. Sharifzadeh, T. Haertlé, F. Ahmad, A.A. Moosavi-
Movahedi, Effect of salts and sodium dodecyl sulfate on chaperone activity of camel αS 1-CN:
Insulin as the target protein, Colloids and Surfaces B: Biointerfaces, 71 (2009) 300-305.
30. S. Benjwal, S. Verma, K.H. Röhm, O. Gursky, Monitoring protein aggregation during thermal
unfolding in circular dichroism experiments, Protein Sci., 15 (2006) 635-639.
31. A. Banaei, H. Ghourchian, P. Rahimi, A.A.M. Movahedi, R. Amjadi, Different electrochemical
behavior of adult and fetal hemoglobin at ionic liquid-carbon nanotube nanocomposite, Journal of
the Iranian Chemical Society, (2014) 1-8.
32. S. Rawat, R. Singh, R.P. Singh, Remediation of nitrite contamination in ground and surface
waters using aquatic macrophytes, (2012).
33. A. Machha, A.N. Schechter, Dietary nitrite and nitrate: a review of potential mechanisms of
cardiovascular benefits, Eur. J. Nutr., 50 (2011) 293-303.

34. A. Nigen, J. Manning, J. Alben, Oxygen-linked binding sites for inorganic anions to hemoglobin,
J. Biol. Chem., 255 (1980) 5525-5529.
35. W. Chen, A. Dumoulin, X. Li, J.C. Padovan, B.T. Chait, R. Buonopane, O.S. Platt, L.R.
Manning, J.M. Manning, Transposing sequences between fetal and adult hemoglobins indicates
which subunits and regulatory molecule interfaces are functionally related, Biochemistry, 39
(2000) 3774-3781.
36. K.A. Markossian, I.K. Yudin, B.I. Kurganov, Mechanism of suppression of protein aggregation
by α-crystallin, International journal of molecular sciences, 10 (2009) 1314-1345.
37. S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and
function, Current protein and peptide science, 1 (2000) 349-384.
38. C. Jun, Y. Xue, R. Liu, M. Wang, Study on the toxic interaction of methanol, ethanol and
propanol against the bovine hemoglobin (BHb) on molecular level, Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 79 (2011) 1406-1410.
39. S. Zolghadri, A. Saboury, A. Golestani, A. Divsalar, S. Rezaei-Zarchi, A. Moosavi-Movahedi,
Interaction between silver nanoparticle and bovine hemoglobin at different temperatures, Journal
of Nanoparticle Research, 11 (2009) 1751-1758.
40. Q. Shao, P. Wu, P. Gu, X. Xu, H. Zhang, C. Cai, Electrochemical and spectroscopic studies on
the conformational structure of hemoglobin assembled on gold nanoparticles, The Journal of
Physical Chemistry B, 115 (2011) 8627-8637.
41. L. Wang, R. Liu, Z. Chi, B. Yang, P. Zhang, M. Wang, Spectroscopic investigation on the toxic
interactions of Ni 2+ with bovine hemoglobin, Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 76 (2010) 155-160.
42. V. Vetri, V. Militello, Thermal induced conformational changes involved in the aggregation
pathways of beta-lactoglobulin, Biophys. Chem., 113 (2005) 83-91.