Cooperativity in biological systems

Document Type : Original Research Papers

Author

Department of Cell Biology, Harvard Medical School, Boston, MA, USA

Abstract

Living organisms can sense and respond to external and internal stimuli. Response is
demonstrated in many forms including modulation of gene expression profiles, motility,
secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensing
small changes in the concentration of an effector molecule or subtle conformational changes in
a protein and invoking the appropriate molecular response by the relevant signaling pathways.
Sensing, transduction, and response to signals may be directly carried out by controlled changes
in the conformation or the assembly of pre-existing components(1,2)or may involve changes in
gene expression patterns (as in cell differentiation and development), which in turn is carried
out by protein-nucleic acid interactions and complex formation. Hence, understanding
conformational changes in proteins and nucleic acids, ligand binding, and complex formation
play acentral role in advancing our knowledge of cellular dynamics. Large-scale interaction
mapping projects continue to provide detailed (though approximate) interaction networks
between pairs of proteins (3–6), but fall short of capturing the stability or dynamics of the
interactions. Integration of these maps with thermodynamic and kinetic information about
conformational changes and binding events in proteins and nucleic acids holds the promise of
discovering simple universal mechanisms that explain and relate seemingly disparate biological
phenomena at many levels of complexity. In this article, I will explore ‘cooperativity’, one of
the most ubiquitous features in molecular biology and discuss how it impacts macromolecular
folding, complex assembly, formation of biological networks, and eventually cellular function
and pathology.

Keywords

Main Subjects


Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science . 2003;300(5618):445–52.
2.        Wu H. Higher-order assemblies in a new paradigm of signal transduction. Cell . 2013;153(2):287–92.
3.        Arabidopsis Interactome Mapping Consortium, Dreze M, Carvunis A-R, Charloteaux B, Galli M, Pevzner SJ, et al. Evidence for network evolution in an Arabidopsis interactome map. Science . 2011;333:601–7.
4.        Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature . 2005;437:1173–8.
5.        Yu H, Braun P, Yildirim M a, Lemmens I, Venkatesan K, Sahalie J, et al. High-quality binary protein interaction map of the yeast interactome network. Science . 2008;322:104–10.
6.        Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, et al. A map of the interactome network of the metazoan C. elegans. Science . 2004;303(5657):540–3.
7.        Zwanzig R, Szabo A, Bagchi B. Levinthal’s paradox. Proc Natl Acad Sci U S A. 1992;89:20–2.
8.        Perica T, Marsh JA, Sousa FL, Natan E, Colwell LJ, Ahnert SE, et al. The emergence of protein complexes: quaternary structure, dynamics and allostery. Biochem Soc Trans . 2012;40:475–91.
9.        Bonetta L. Protein-protein interactions: Interactome under construction. Nature . 2010;468(7325):851–4.
10.      Davidovich C, Zheng L, Goodrich KJ, Cech TR. Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol. 2013;20(11):1250–7.
11.      Van Leeuwen F, Gottschling DE. Genome-wide histone modifications: Gaining specificity by preventing promiscuity. Curr Opin Cell Biol . 2002;14(6):756–62.
12.      Dill K a, Fiebig KM, Chan HS. Cooperativity in protein-folding kinetics. Proc Natl Acad Sci U S A . 1993;90(5):1942–6.
13.      Tinoco I, Bustamante C. How RNA folds. J Mol Biol . 1999;293(2):271–81.
14.      Pan J, Woodson S a. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA. J Mol Biol . 1999;294(4):955–65.
15.      Woodson S a. Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci . 2000;57(5):796–808.
16.      Siegfried N a., Bevilacqua PC. Thinking Inside the Box. Designing, Implementing, and Interpreting Thermodynamic Cycles to Dissect Cooperativity in RNA and DNA Folding . Methods in Enzymology. 2009. 365–93.
17.      Moody EM, Feerrar JC, Bevilacqua PC. Evidence that folding of an RNA tetraloop hairpin is less cooperative than its DNA counterpart. Biochemistry . 2004;43(25):7992–8.
18.      Moody EM, Bevilacqua PC. Structural and energetic consequences of expanding a highly cooperative stable DNA hairpin loop. J Am Chem Soc . 2004;126(31):9570–7.
19.      Rangan P, Masquida B, Westhof E, Woodson S a. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc Natl Acad Sci U S A . 2003;100(4):1574–9.
20.      Thirumalai D, Woodson S a. Kinetics of folding of proteins and RNA. Acc Chem Res . 1996;29(9):433–9.
21.      Silverman SK, Cech TR. Energetics and cooperativity of tertiary hydrogen bonds in RNA structure. Biochemistry . 1999];38(27):8691–702.
22.      Silverman SK, Zheng M, Wu M, Tinoco I, Cech TR. Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. RNA . 1999;5(12):1665–74.
23.      Klostermeier D, Millar DP. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers . 2002;61(3):159–79.
24.      Sattin BD, Zhao W, Travers K, Chu S, Herschlag D. Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc . 2008;130(19):6085–7.
25.      Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson S a. Cooperative tertiary interaction network guides RNA folding. Cell . 2012;149(2):348–57.
26.      Deras ML, Brenowitz M, Ralston CY, Chance MR, Woodson S a. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Biochemistry . 2000 12;39(36):10975–85.
27.      Ralston CY, He Q, Brenowitz M, Chance MR. Stability and cooperativity of individual tertiary contacts in RNA revealed through chemical denaturation. Nat Struct Biol . 2000;7(5):371–4.
28.      Koculi E, Cho SS, Desai R, Thirumalai D, Woodson S a. Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures. Nucleic Acids Res . 2012;40:8011–20.
29.      Woodson S a. Compact intermediates in RNA folding. Annu Rev Biophys . 2010;39:61–77.
30.      Pan J, Woodson S a. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol . 1998;280(4):597–609.
31.      Chauhan S, Behrouzi R, Rangan P, Woodson S a. Structural Rearrangements Linked to Global Folding Pathways of the Azoarcus Group I Ribozyme. J Mol Biol . 2009;386(4):1167–78.
32.      Treiber DK, Rook MS, Zarrinkar PP, Williamson JR. Kinetic intermediates trapped by native interactions in RNA folding. Science . 1998;279(5358):1943–6.
33.      Wan Y, Russell R. Enhanced specificity against misfolding in a thermostable mutant of the tetrahymena ribozyme. Biochemistry . 2011;50(5):864–74.
34.      Jackson SE. How do small single-domain proteins fold? Fold Des.; 1998;3(4):R81–91.
35.      Kloss E, Courtemanche N, Barrick D. Repeat-protein folding: New insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys . 2008;469(1):83–99.
36.      Dill K a. Polymer principles and protein folding. Protein Sci . 1999;8(6):1166–80.
37.      Schellman JA. The Factors Affecting the Stability of Hydrogen-bonded Polypeptide Structures in Solution. J Phys Chem . 1958;62:1485–94.
38.      Zimm BH, Bragg JK. Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains. J Chem Phys . 1959;31(2):526.
39.      Dill K a, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, et al. Principles of protein folding-a perspective from simple exact models. Protein Sci . 1995 ;4(4):561–602.
40.      Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991;30:3147–61.
41.      Wetlaufer DB. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973;70:697–701.
42.      Rose GD. Hierarchic organization of domains in globular proteins. J Mol Biol. 1979;134:447–70.
43.      Dobson CM. The structural basis of protein folding and its links with human disease. Biochem Soc Symp . 2001;1–26.
44.      Porter LL, Rose GD. A thermodynamic definition of protein domains. Proc Natl Acad Sci . 2012;109(24):9420–5.
45.      Llinás M, Marqusee S. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci . 1998;7(1):96–104.
46.      Shank E a, Cecconi C, Dill JW, Marqusee S, Bustamante C. The folding cooperativity of a protein is controlled by its chain topology. Nature . 2010;465(7298):637–40.
47.      Tsytlonok M, Itzhaki LS. The how’s and why's of protein folding intermediates. Arch Biochem Biophys . 2013;531:14–23.
48.      Croy CH, Bergqvist S, Huxford T, Ghosh G, Komives EA. Biophysical characterization of the free IkappaBalpha ankyrin repeat domain in solution. Protein Sci. 2004;13:1767–77.
49.      Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006;124:973–83.
50.      Aksel T, Barrick D. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Methods Enzymol . 2008;455:95–9125.
51.      Aksel T, Majumdar A, Barrick D. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding. Struct. 2011;19(3):349–60.
52.      Spudich G, Marqusee S. A change in the apparent m value reveals a populated intermediate under equilibrium conditions in Escherichia coli ribonuclease HI. Biochemistry. 2000;39(38):11677–83.
53.      Englander SW, Mayne L, Rumbley JN. Submolecular cooperativity produces multi-state protein unfolding and refolding. Biophys Chem. 2002;101-102:57–65.
54.      Krantz BA, Mayne L, Rumbley J, Englander SW, Sosnick TR. Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding. J Mol Biol. 2002;324:359–71.
55.      Wolynes PG, Onuchic JN, Thirumalai D. Navigating the folding routes. Science. 1995;267(5204):1619–20.
56.      Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins Struct Funct Genet . 1995;21(3):167–95.
57.      Lindberg MO, Oliveberg M. Malleability of protein folding pathways: a simple reason for complex behaviour. Curr Opin Struct Biol . 2007;17(1):21–9.
58.      Schultes E a, Spasic A, Mohanty U, Bartel DP. Compact and ordered collapse of randomly generated RNA sequences. Nat Struct Mol Biol . 2005;12(12):1130–6.
59.      Scalley-Kim M, Baker D. Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection. J Mol Biol . 2004;338(3):573–83.
60.      Watters AL, Deka P, Corrent C, Callender D, Varani G, Sosnick T, et al. The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection. Cell . 2007;128(3):613–24.
61.      Baird NJ, Srividya N, Krasilnikov AS, Mondragón A, Sosnick TR, Pan T. Structural basis for altering the stability of homologous RNAs from a mesophilic and a thermophilic bacterium. RNA . 2006;12(4):598–606.
62.      Campbell ZT, Bhimsaria D, Valley CT, Rodriguez-Martinez J a., Menichelli E, Williamson JR, et al. Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity. Cell Rep . 2012;1(5):570–81.
63.      Swygert SG, Manning BJ, Senapati S, Kaur P, Lindsay S, Demeler B, et al. Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun . 2013;5.
64.      Kuriyan J, Eisenberg D. The origin of protein interactions and allostery in colocalization. Nature . 2007;450(7172):983–90.
65.      Ptashne M, Ptashne M, Gann a, Gann a. Transcription initiation: imposing specificity by localization. Essays Biochem. 2001;37:1–15.
66.      Moazed D. Mechanisms for the inheritance of chromatin states. Cell . 2011;146(4):510–8.
67.      Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, et al. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature. 2014;515(7526):287–90.
68.      Levchenko a, Bruck J, Sternberg PW. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci U S A . 2000;97(11):5818–23.
69.      Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, et al. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron . 2002;35(4):697–709.
70.      Seeliger M a, Breward SE, Friedler A, Schon O, Itzhaki LS. Cooperative organization in a macromolecular complex. Nat Struct Biol . 2003;10(9):718–24.
71.      Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol . 2007;8(12):983–94.
72.      Ruthenburg AJ, Li H, Milne T a., Dewell S, McGinty RK, Yuen M, et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell . 2011;145(5):692–706.
73.      Kim H, Abeysirigunawarden SC, Chen K, Mayerle M, Ragunathan K, Luthey-Schulten Z, et al. Protein-guided RNA dynamics during early ribosome assembly. Nature . 2014;506(7488):334–8.
74.      Woodson S a. RNA folding pathways and the self-assembly of ribosomes. Acc Chem Res . 2011;44(12):1312–9.
75.      Williamson JR. Cooperativity in macromolecular assembly. Nat Chem Biol . 2008;4(8):458–65.
76.      Ramaswamy P, Woodson S a. S16 throws a conformational switch during assembly of 30S 5’ domain. Nat Struct Mol Biol . 2009 (4):438–45.
77.      Ridgway D, Broderick G, Lopez-Campistrous A, Ru’aini M, Winter P, Hamilton M, et al. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J . 2008;94(10):3748–59.
78.      Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24(11):437–40.
79.      Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol . 2006;42(3):187–219.
80.      Kim C a, Gingery M, Pilpa RM, Bowie JU. The SAM domain of polyhomeotic forms a helical polymer. Nat Struct Biol . 2002;9(6):453–7.
81.      Moazed D. Common themes in mechanisms of gene silencing. Mol Cell . 2001;8(3):489–98.
82.      Brewer CF, Miceli MC, Baum LG. Clusters, bundles, arrays and lattices: Novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol . 2002;12(5):616–23.
83.      Oppikofer M, Kueng S, Keusch JJ, Hassler M, Ladurner AG, Gut H, et al. Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation. EMBO J . 2013;32:437–49.
84.      Li P, Banjade S, Cheng H-C, Kim S, Chen B, Guo L, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483(7389):336–40.
85.      Ferrell JE. Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability . Current Opinion in Cell Biology. 2002. 140–8.
86.      Dodd IB, Micheelsen M a., Sneppen K, Thon G. Theoretical Analysis of Epigenetic Cell Memory by Nucleosome Modification. Cell. 2007;129:813–22.
87.      Dodd IB, Sneppen K. Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol . 2011;414(4):624–37.
88.      Grewal SIS, Moazed D. Heterochromatin and epigenetic control of gene expression. Allis CD, Jenuwein T, Reinberg D, editors. Science . Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2003;301(5634):798–802.
89.      Qian H. Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme, Bistability with Nonlinear Feedback, and Other Mechanisms for Sigmoidal Responses. Annu Rev Biophys . 2012;41:179–204.
90.      Chen L, Widom J. Molecular basis of transcriptional silencing in budding yeast. Biochem Cell Biol . 2004;82(4):413–8.
91.      Baker D. A surprising simplicity to protein folding. Nature . 2000;405(6782):39–42.
92.      Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent G a, Soutar a K, et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature . 1993;362(6420):553–7.
93.      Booth DR, Sunde M, Bellotti V, Robinson C V, Hutchinson WL, Fraser PE, et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature . 1997;385(6619):787–93.
94.      Canet D, Last AM, Tito P, Sunde M, Spencer A, Archer DB, et al. Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat Struct Biol . 2002;9(4):308–15.
95.      Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, et al. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature . 2003;424(6950):783–8.