Effects of culture medium and supplementation on seed germination, protocorm formation and regeneration of some *Phalaenopsis* hybrids

Golandam Sharifi\(^1\)\(^2\)\(^*\), Masoud Mirmasoumi\(^3\)\(^*\), Zahra Zahed\(^3\), Malihe Entezari\(^4\)

\(^1\) Young Researcher and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
\(^2\) Department of Basic Sciences, Iran Encyclopedia Compiling Foundation (IECF), Saadat Abad region, Farhang Blvd., Maaref Ave., Danesh Alley, Postal Code: 1997743881, Tehran, Iran
\(^3\) School of Biology, College of Science, University of Tehran, PO Box: 14155-6455, Tehran, Iran
\(^4\) Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran

Received: August 28, 2016; Accepted: December 21, 2016

ABSTRACT

An efficient protocol is suggested for *in vitro* culture of five *Phalaenopsis* hybrids obtained by hand-cross-pollination of three commercial hybrids Calgary, Ankara, and Kendall. Four nutrient media- namely half-strength Murashige and Skoog, Knudson, Phytamax containing activated charcoal, and Mitra– once supplemented (with coconut water, peptone, or both), and once without any supplement were considered as the experimental and control groups of the study which were then compared and evaluated for seed germination and protocorm formation. All of the seeds of hybrids H and N were germinated on half-strength Murashige and Skoog medium supplemented with peptone. To evaluate plant regeneration rate, three different media including half-strength Murashige and Skoog, Viking-Ship containing 2.75gr/L NPK (10-20-30), and Hyponex containing [1gr/L NPK (20-20-20)+1gr/L NPK (6.5-6-19)] were compared. The maximum number of healthy plantlets, roots per plantlet, and leaves per plantlet were induced in the half-strength Murashige and Skoog medium. Around 93% of the plants produced *in vitro* were able to establish ex *vivo*. The obtained results showed that, the use of the half-strength Murashige and Skoog medium is well suited for the mass propagation of *Phalaenopsis*.

Keywords: Phalaenopsis; Micropropagation; Protocorm; Seed germination; In *vivo* culture

Introduction

Although the family Orchidaceae with around 26000 species is one of the largest families of flowering plants, the species within this family are considered as endangered species as they are rapidly decreasing in number due to careless collection (1). More than 100,000 commercial hybrids are currently known in this family (2).

The species of the genus *Phalaenopsis* are the most important cut flowers and potted plants of the family Orchidaceae. *Phalaenopsis* species are epiphytic and monopodial orchids native to southeastern Asia and
Micropropagation of *Phalaenopsis*

are famous for their beautiful flowers. Extensive hybridization in *Phalaenopsis* has resulted in large variations in flower shapes, sizes and colors as well as color patterning (3).

In order to meet large-scale world market demands for *Phalaenopsis* orchids, and to prevent these orchids from extinction and loss of genetic diversity, plant producers need to develop a reliable regeneration protocol for commercial production of these orchids. In orchids, protocorm-like bodies (PLBs: the structures that resemble protocorms but are formed by tissue explants and/or callus in vitro) are equivalent to somatic embryos (4, 5). In this species, in vitro regeneration could be done through either callus or PLB formation (6). Although tissue culture is an effective mode of orchid multiplication, the indirect method can not be very useful due to lower growth rate and regular necrosis in culture (7). Moreover, direct regeneration without formation of intermediate callus fastens the process and reduces the occurrence of somaclonal variation (8). The rate of natural seed germination in orchids is very low and they frequently need to have mycorrhizal association for their germination (9). Although the techniques of in vitro propagation have been widely accepted and are being used for conservation of the endangered species of orchids, there is limited scientific research on in vitro seed germination of orchid seeds (10). Asymbiotic seed germination procedures have gained wide acceptance after Knudson found an easy and simple way for seed germination on a medium which contained minerals, and sugar (11, 12). After germination, the orchid seeds develop into a structure called the protocorm (the small spherical tuber-like bodies formed by germinating orchid seeds) (13). Among different ways of orchid micropropagation, the system via protocorm formation is used for the purpose of breeding, and for conserving endangered cases (14). In vitro seed germination (15, 16), growth and development (17), micropropagation using vegetative segments (8, 18-20), micropropagation using floral segments (21-23), and embryogenesis (24-31) have been successfully used for *Phalaenopsis* regeneration. Several studies have been performed to survey the acclimatization of *Phalaenopsis*. Another type of research is to design an automatic machine vision-guided grasping system for *Phalaenopsis* tissue culture plantlets (32).

The aim of this study is to develop an easier and more economical procedure to induce protocorms as well as better regeneration and acclimatization of *Phalaenopsis*. The new idea in this research is to compare the regeneration efficiency of some new hybrids of *Phalaenopsis*. The interaction between hybrids and the type of medium as well as supplements has also been investigated, and is discussed in more detail.

Materials and Methods

Seed source and sterilization procedure

The hybrids Calgary, Ankara, and Kendall were obtained from the orchid company of Anthura, Netherland. Five *Phalaenopsis* hybrids obtained by hand-cross pollination of three hybrids of *Phalaenopsis* were employed in the study. The five obtained hybrids were labeled as follows: hybrid F (pollen grain of Ankara with pistil of Calgary), hybrid B (pollen grain of Kendall with pistil of Calgary), hybrid H (pollen grain of Ankara with pistil of Kendall), hybrid J (pollen grain of Calgary with pistil of Kendall), and hybrid N (pollen grain of Kendall with pistil of Ankara).

The seeds collected 136 days after pollination (DAP) were used for in vitro culture to assess asymbiotic seed germination and formation of protocorms of *Phalaenopsis* hybrids. The capsules were disinfected in commercial bleach “Whitex” for 20 mins. Disinfection proceeded by dunking the capsules in alcohol and then lighting them on fire followed by rinsing them with sterile distilled water for three times. Seed germination started after 14 days. Seedlings were maintained in the primary medium for an additional 30 days period.

Plant material, culture medium and supplement

Four different culture media- namely, ½MS, Knudson’s C (KC), Mitra (M), and Phytamax (PM) containing Activated Charcoal (AC) were tested. In addition, two different supplements, that is 2 gr/L peptone and 15% CW, were also introduced into each medium, once separately and once in tandem, and their effects were investigated. After the induction of the protocorms, they were left on the primary medium for an extra four-month period.
Figure 1. Comparison of seed germination in different hybrids of Phalaenopsis, supplements and media. For abbreviation of hybrids and their parental origin, see the text.

Since the number of samples in hybrid J was too small, this hybrid was excluded from the study after the seed germination phase of the study. The first leaves and roots that appeared after the four month period were transferred to three different media: ½MS, Viking-Ship containing 2.75 gr/L NPK (10-20-30) and Hyponex containing [1 gr/L NPK (20-20-20) + 1 gr/L NPK (6.5-6-19)]. After adding 2 g/L peptone and 30 g/L Potato Homogenate (PH), the effects of organic supplements on growth and development of plantlets were compared with those of the plantlets in the control group. The number of healthy plantlets, roots and shoots were counted. Based on the obtained results, the ½MS medium and the Hyponex medium containing 1gr/L NPK (20-20-20)/1 gr/L NPK (6.5-6-19) were selected. Healthy plantlets were transferred to these two media so that they could continue their next stages of growth and development. Plantlet length, number of leaves and roots per plantlet were recorded after the plantlets remained on the selected media for three months. Finally, the plantlets were transferred to soil for further growth, and their survival rate in pots was assessed.

Acclimatization

To remove residual gelling agent and nutrients from plant body, 30 regenerated plantlets ranging from 5 to 7 cm in length were rinsed thoroughly with tap water and were implanted on the following substrates: peat, perlite, pine bark mulch and charcoal at a ratio of 20-10-35-35. During acclimatization, the humidity of the growth chamber was maintained between 50-70%. The plants were acclimatized and let grow for additional four-month phase under greenhouse conditions.

Experimental design and data analysis

The following formula was used to calculate the percentage of seed germination:

\[
\text{Number of seeds showing swelling of the embryo} \times 100
\]

\[
\text{Total No. of seeds}
\]

The number of healthy plantlets, the number of roots and leaves per plantlet were calculated after two months of transfer to the secondary media with additional supplements. Plantlet length, number of roots and leaves per plantlet were recorded after three months of subculturing in the selected media. Data were obtained and analyzed using SAS software version 9; general linear model (GLM) and mean comparisons were performed using Duncan’s multiple range test (DMRT) with a confidence level of P<0.05 (33). Multiple comparisons were also performed by GLM and Bonferroni post hoc using SPSS version 19.
Results

Seed germination

Seed germination initiated after 14 days. For hybrids H and N the maximum germination was obtained (100%) in ½MS medium supplemented with peptone, which has been reported also previously (34). Hybrid N showed 99.1% germination in ½MS medium supplemented with peptone and CW. No germination was observed for any of the hybrids on the KC medium supplemented with CW (Supplementary Table 1). In respect to germination rate, hybrid N showed the best results (Figure 1). Multiple comparisons using Bonferroni post hoc test showed that hybrid J had a significant difference with other hybrids except for hybrid F (p<0.05). Moreover, hybrid F showed no significant difference with other hybrids except for hybrid H (p<0.05) (Supplementary Table 2). From the different media, only M and ½MS showed similar results (Supplementary Table 3 and Figure 1). All supplements showed significant differences (Supplementary Table 4). But, the most effective supplement for seed germination was peptone followed by peptone plus CW, CW, and control, respectively (Figure 1).

Plantlet regeneration

Seeds were maintained on the primary medium after germination. The protocorms formed, became green, and started to develop the first leaves and roots (Figure 2a-d). For hybrids B and N, the maximum number of healthy plantlets (=15) was obtained on the ½MS medium supplemented with peptone or PH. Hybrid N showed the highest number of roots per plantlet (=4.16) on ½MS medium supplemented with peptone. Nevertheless, hybrid H displayed the maximum number of leaves per plantlet (=4.37) on the ½MS medium without supplementation (Supplementary Table 5). After subculturing the healthy plantlets of four selected hybrids in the ½MS medium and the Hypoex medium containing [1 gr/L NPK (20-20-20) + 1 gr/L NPK. (6.5-6-19)], plantlet length conserved in the two media did not differ significantly (p<0.05), but the maximum length (=3.35-3.37 cm) was obtained for hybrid B on the media supplemented with PH. For hybrid F, the highest number of roots per plant (=7.6) was reported on the ½MS medium supplemented with peptone. Likewise, hybrid B showed the highest number of leaves per plant (=5.88) on the ½MS medium supplemented with PH. Different stages of plantlet regeneration are shown in Figures 2e-g.

Acclimatization

After a period of four months, the survival rate of the plantlets which were planted in containers filled with peat, perlite, pine bark mulch, and charcoal at a ratio of 20:10:35:35, was 93%. The morphology of the regenerated plants did not show any significant difference (Figure 2h).

Overall, the results significantly differed when different factors – that is hybrid, medium and supplementation – were analyzed separately (Figure 3-5).
Figure 3. Number of healthy plantlets, roots and leaves in different hybrids, media and supplements. For abbreviation of hybrids ant their parental origin, see the text. Abbreviations for culture media: PH, Potato Homogenate; Pep, Peptone; Ms, Murashige and Skoog.

Figure 4. Number of leaves and roots in final subculture in different hybrids, media and supplements. For abbreviation of hybrids and their parental origin, see the text. Abbreviations for culture media: PH, Potato Homogenate; Pep, Peptone; Ms, Murashige and Skoog.

Discussion

In vitro seed germination and plant regeneration of orchid species including Phalaenopsis sp. is a suitable technique many for their clonal propagation. As stated above, studies have been conducted on the micropropagation of Phalaenopsis, but the novelty of the present study compared to previous ones is that it has simultaneously taken three factors into account: hormone, medium and hybrid. The results of this study confirm that there is some interaction between the factors, and that it significantly affects the success of in vitro plant regeneration. Furthermore, in the current research, we studied the direct regeneration of Phalaenopsis through seed germination, while in earlier studies micropropagation in Phalaenopsis was studied through somatic embryogenesis or indirect regeneration and this is another important strength of the present study.

Park et al. tested ½MS, VW, KC, LM and Hyponex media for PLB induction from leaf explants (23) and found the optimal results in ½MS. Thongpukdee et al. have reported the maximum percentage of Phalaenopsis seed germination in modified stationary-liquid Hyponex medium supplemented with 2 g/L peptone, 100 g/L potato juice and 1 g/L AC (35). The results of the current study also suggest that the ½MS medium is the most effective medium in all stages of seed germination and plant regeneration. Nitrogen source is a key factor that affects seed germination in Phalaenopsis hybrids. In the ½MS medium, nitrogen is in the form of ammonium nitrate while it is in the form of ammonium sulphate in Mitra and KC. The ½MS is also rich in macro- and micro-elements which are necessary for successful germination of seeds that could in turn enhance the seed germination in this medium.
Micropropagation of Phalaenopsis

The addition of peptone or tryptone to the culture medium promoted the growth of PLBs derived from the seeds of Phalaenopsis Surfrider × (Phalaenopsis Joseph Hampton × Doritaenopsis Kaalan Gleam) (36). The enhancing effect of peptone on seed germination and the subsequent development of the protocorms of Dendrobium aphyllum has previously been shown (37). CW is also a supplement which has been used in micropropagation protocols of economically important species such as orchids (38). According to Yong et al., CW contains amino acids, organic acids, inorganic ions, vitamins, sugars, lipids, nitrogenous compounds, and hormones, and therefore can promote the growth of cells (39). The positive effects of 20%

CW in VW medium (40) on PLB multiplication has been reported in Phalaenopsis plants (24). In the present research, peptone (used in isolation or in tandem with CW) significantly enhanced the germination of all hybrids in all media except for KC. Moreover, CW—especially in association with peptone—increased the rate of seed germination and protocorm induction in all media except for KC. The low rate of seed germination in KC has also been reported in another study on other species of orchids (41).

PH also contains polyamine and biosynthetic enzymes that affect nucleic acid replication and cell division during mitosis, and therefore promotes plant cell growth and development. It also contains useful carbohydrates, sugars, proteins and vitamins required for plant growth (42). Arditti and Ernst reported that the addition of PH to orchid culture medium enhances seed germination and growth of seedlings (43). In the present study, PH, as a supplementation, had the maximum effect on some factors such as the number of healthy plantlets, the number of leaves per plantlet, and plantlet length.

Chen and Chen obtained the highest survival rate of 100% for Phalaenopsis grown on Sphagnum moss (27). Balilashaki et al. reported the highest survival rate of 99% for acclimatization on a combination of cocopeat, charcoal, industrial cartridge, and the bites of polystyrene (1-1-2-4) (44). Diaz et al. showed that the survival rate depends on the plant growth stage in vitro (45). In other words Phalaenopsis plants need to reach 2-4 cm in size under in vitro conditions to be able to endure external conditions in the greenhouse on moss, mesquite wood shavings, and perlite. By reaching this size, these plantlets get the proper number of sprouts, foliage area (leaf size and number) as well as root number and length and reach maximal survival rate (100%) compared to plantlets in the range of 1-2 cm which suffer from a smaller, survival rate of 44%. In the present study, plantlets in the range of 5-7 cm were implanted on substrate containing peat, perlite, pine bark mulch, and charcoal. The observed high survival rate of 93% might therefore be attributed to the size range of plantlets.

This paper is the first report describing the combined effects of the three factors of medium, supplementation, and hybrid on in vitro culture and

Figure 5. Length of Phalaenopsis plantlets in final subculture in different hybrids, media and supplements. For abbreviation of hybrids and their parental origin, see the text. Abbreviations for culture media: PH, Potato Homogenate; Pep, Peptone; Ms, Murashige and Skoog.
the regeneration of *Phalaenopsis* sp. The efficient seed germination, followed by convenient conversion to plantlets, provides a simple, easy and effective protocol for a large number of plants and for the mass propagation of this important ornamental orchid in a short period of time.

Conclusion

In summary, our results of the current study indicate that the ½MS is the best medium for seed germination and plantlet regeneration at different stages of growth and development. From the different supplements, peptone showed better results for seed germination, but PH was the best supplementation for the regeneration of plantlets. Nevertheless, each hybrid showed unique reaction to each experimental phase, and no single hybrid can be said to have had the best reaction to all of the experimental stages of this study simultaneously. Hybrid N, for instance, was best in seed germination but not in subsequent stages of growth and development.

Acknowledgement

The authors would like to thank the College of Sciences of the University of Tehran for providing plant physiology laboratory equipment, and the Young Researchers and Elite Club at the Tehran Medical Sciences Branch of the Islamic Azad University, for its supporting the financial part of this study (Grant number: 93131). The authors also to thank Dr. Vahid Gahraman and Dr. Mohammad Ali Salmani Nodushan of the Iran Encyclopedia Compiling Foundation (IECF) and Mrs. Nardana Esmailie (PhD) of Texas University, USA, for critical reading of the manuscript.

REFERENCES

Micropropagation of *Phalaenopsis*

220

