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In this paper we introduce a stochastic optimization method based on a mixed Bayesian/ frequentist approach to a 

sample size determination problem in a clinical trial. The data are assumed to come from a normal distribution for 

which both the mean and the variance are unknown. In contrast to the usual Bayesian decision theoretic 

methodology, which assumes a single decision maker, our method recognizes the existence of three decision 

makers, namely: the company conducting the trial, which decides on its size; the regulator, whose approval is 

necessary for the drug to be licensed for sale; and the public at large, who determine ultimate usage. Moreover, w 

model the subsequent usage by plausible assumptions for actual behaviour. A Markov Chain Monte Carlo is applied 

to find the maximum expected utility of conducting the trial. 

Keywords: Sample Size Determination; Mixed Bayesian/ Frequentist Approach; Normal Distribution; Regulatory 

Authority; The Markov Chain Monte Carlo (MCMC) Method 

 

 

Introduction 

Sample size determination problem is an important 

task in the planning of trials. The problem may be 

formulated formally in statistical terms. The most 

frequently used methods are based on the required 

size, and power of the trial for a specified treatment 

effect (1, 2, 3). Several authors have recognized the 

value of using prior distributions rather than point 

estimates in sample size calculations. In one case, the 

author gives a comprehensive review of different 

techniques for sample size determination using both 

frequentist and Bayesian approaches (4). 

The Bayesian approach can be divided into two 

major types; the inferential Bayesian and the fully 

Bayesian or decision theoretic approach. Also a 

simplified version of the problem of sample size 

determination for a clinical trial for which the solution 

was expressed in algebraic terms (5). In addition the 

fully Bayesian model has been extended to more 

realistic cases (6-11). In this paper we apply a 

stochastic optimization approach to find the optimum 

size of a clinical trial. The work extends the former 
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research (7) by considering a regulatory authority in 

the model. Alternative formulations of the regulator’s 

requirements are considered, expressed either in 

frequentist or in Bayesian terms. Optimisation is 

carried out using the Markov Chain Monte Carlo 

method. 

In next section we state the sample size problem 

and introduce the notation. The objective function, 

which is the expected net benefit of conducting the 

trial, is also introduced in next section. In “Results 

and Discussion” the regulatory authority as the third 

decision maker is introduced. We present two 

algorithms for the sample size determination problem 

for both the cases with a frequentist authority and with 

a Bayesian authority. 

Material and Methods 

Suppose that for i=1, 2, ..., n, the Xᵢ 's are the clinical 

outcomes on some appropriate scale for users 

(patients) using the new treatment and the Yᵢ 's are 

those for users (patients) using another treatment. 

Assume that Xᵢ ~N(µ+δ ,σ²) and Yᵢ~N(µ, σ²). 

Consider �̅�𝑛 = �̅�𝑛 − �̅�𝑛. Therefore �̅�𝑛~ 𝑁( 𝛿,
2𝜎2

𝑛
). 

The joint likelihood function for 𝑆𝑥
2, 𝑆𝑦

2  and �̅�𝑛 is 

proportional to: 

  2 1 /22 2 2 2

2
1( ) exp( ( ( )

22
))

 
   

n

x y n
nσ   s s z δ
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For every user who goes on to use the new treatment 

as a result of the trial there is a benefit. The objective 

(or expected net benefit) function r(n), for a trial with 

n users, is the total expected benefit from the resulting 

change in the number of users of the new treatment 

minus the cost of the trial. The benefit per user may 

correspond to a public health benefit depending on δ 

or might be a commercial benefit more appropriate for 

the company conducting the trial. The question is, 

how many observations may maximize the total 

expected benefit? 

Let the cost of carrying out a trial with n 

observations be cn if n>0, and 0 if n=0. 

Following (13), let us assume that the prior density 

functions for δ and 𝜎2are of the form shown below,for 

𝜎2 the prior distribution is 

𝜋(𝜎2) = (
𝑎

2
)

𝑔

2 1

Γ(𝑔 2)⁄
(𝜎2)−

𝑔+2

2 exp (−
𝑎

2𝜎2)        (1) 

This is a kind of inverse chi-squared distribution, 

because the distribution of 𝑎 𝜎2⁄ is chi-squared with g 

degrees of freedom. Also 
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The mean and variance of the prior distribution for 

δ are µ and ωa/(g-2)= τ²,  respectively. The marginal 

posterior density function of δ can be obtained by 

integrating the joint posterior density over σ². 

Applying Bayes' theorem the posterior densities turn 

out to be a non central t-distribution  
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Therefore (𝛿 − 𝜇′)/(𝜔′𝑎′)−1/2 has a Student t-

distribution with 𝑔′ degrees of freedom. So the 

posterior mean and variance of δ (provided 𝑔′ > 2) are  

 2 22
( ) , ,

2 2


   

  
n

n n

μ nωz ωaμ z           τ z  s
nω g

  

Let us suppose that m the number of subsequent 

users, depends on the mean 𝜇′ and the standard 

deviation 𝜏′ of the posterior distribution for δ as 

shown by Fig. 1.  
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Figure 1.    2 21.5 , , 1.5 ,    A A τ z  s  B B τ z  s  

 

The parameter M is the expected total number of 

users, given a substantial improvement in 

performance. A  and B are two parameters which must 

be estimated. Their values depend on the difference 

between the expected cost of the new treatment and 

that of the current service. 

This function corresponds to assuming that each 

individual has a personal threshold difference between 

A and B, and is prepared to switch to the new 

treatment provided that the apparent difference 

between the two treatments exceeds this threshold by 

at least 1.5 standard deviations of the posterior 

distribution for the difference. 

Using some algebra, we see that 
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The number of subsequent users of the new 

treatment can be written in algebra form as: 

𝑚 =  {

0                                            𝜇′ < 𝐴′

𝑀

𝐵′ − 𝐴′
(𝜇′ − 𝐴′)                      𝐴′ < 𝜇′ < 𝐵′

𝑀                                         𝐵′ < 𝜇′

 

 

Appropriate values for A and B were found by 

some authors (8), while other authors apply a logistics 

type function to represent the number of subsequent 

users of the new treatment (9). 

We shall now proceed to write down the objective 

function for two types of benefit function. We shall 

call these the public health and the commercial benefit 

function, respectively. Numerical examples follow. 

 

The public health benefit function 

The benefit per user of taking the new treatment is 

assumed to be 𝑏1𝛿 in which 𝑏1 is a constant. The 

objective (i. e. expected net benefit) function, which is 

proposed, consisting of total benefit from the resulting 

change in the number of users taking the new 

treatment minus the cost, can be written as 

 

 2 2

1

1.5 ,
2
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n n
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g

∬
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 n nμ B

 Mb μ  f z  s  d z  ds cn∬      (7) 

Note that a' depends on 𝑧𝑛̅̅ ̅ and 𝑠2. Solving for 

𝑧𝑛̅̅ ̅ in the first equation produces a quadratic equation 

with two real roots, the larger of which may be shown 

to be 𝐻1.  𝐻2  may be found in similar fashion. We 

have used the MCMC method to find the maximum of 

r(n) and consequently the optimum sample size in 

expression (8). 

 

The commercial benefit function 

If we assume that for each user taking the new 

treatment there is a benefit 𝑏2 independent of δ, then 

(8) 

     2

2 2
2 2, ,    z s

r n   b mf z  s ds dz cn  b E m cn   

By proceeding as in section (2.1) it can be shown 

that the objective function is 
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 Mb f z  s dz ds cn  ∬       (9) 

See (3) for more details. 

In this paper, we use the symbols 𝐻1 and 𝐻2 for the 

bounds of the integrals in the objective function 

appeared in both the commercial and public health 

cases. 
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The MCMC method was used to find the 

maximum of the above objective function for the case 

with a logistic utility function representing the number 

of subsequent users of the new treatment (6). Here we 

use the MCMC method for maximizing the expected 

net benefit function for the case where there exists a 

regulatory authority. We generate two large samples 

from 𝑠2and 𝑧 ̅ to approximate 𝐸[𝑚𝜇′]. 

 

The regulatory authority as the third decision maker 

As discussed above we include two decision makers 

in our model, the company conducting the trial and 

the users or their medical advisors who decide on 

whether to use it. In this section we take the 

regulatory authority as the third decision maker into 

account. Both the frequentist and Bayesian regulatory 

authority will be considered. 

 

Licensing the new treatment; a frequentist regulator 

In this case, we assume that the regulator performs a 

test δ=0 against δ>0, the critical region for rejecting 

the null assumption in favor of the alternative is of the 

form 

22 n α
σz z
n

 

We show this condition by 𝐻𝑟. There are three 

cases to be considered. 

 

Case 1) : 

2

1 2
2  α
σz H H

n
 

In this case the regulator's decision does not have 

an effect on the number of subsequent users of the 

new treatment. 

The objective function for this case is similar to the 

case with no regulator (Fig. 2-2). 

 

 

Figure 2. The number of subsequent users when a regulator authority appears. It should be noted that 

𝑯𝒓 (denoting the regulator condition) can be written from a frequentist or a Bayesian perspective. 



Maryam Bideli et al. 

Progress in Biological Sciences / Vol. 6 (1) 2016 / 1-9 
 

5 

Case 2) : 

2

1 2
2  α
σH  z H

n
 

In this case it is assumed that the minimum amount 

of improvement in performance required by the 

regulator to grant a license is bigger than the one 

assumed by the company conducting the trial (see 

Figure 2-3). 

Case 3) : 

2

1 2
2  α
σH H  z

n
  

As shown by Fig. 2-4, if the condition holds, all 

users will switch to the new treatment. 

 

Table 1. The optimal sample size for various parameter values 

 
 

Licensing the new treatment; a Bayesian regulator 

Let us suppose that the regulator uses a prior 

density for δ which is 𝑁(𝜇𝑟 , 𝜏𝑟
2). The subscript r will 

indicate the corresponding parameters for the 

regulator's prior distribution. Also suppose that the 

new treatment will be approved if and only if 
𝜇𝑟

′ < 𝐿 + 1.5𝜏𝑟
′  in which L is the minimum amount of 

improvement required by the regulatory authority. 

This inequality may be written as 𝑧𝑛̅̅ ̅ <  𝐻𝑟. Using this 

notation once again there are three cases to be 

considered; 1) 𝐻𝑟 ≤  𝐻1 ≤  𝐻2 , 2) 𝐻1 ≤  𝐻𝑟 ≤  𝐻2 

and 3) 𝐻1 ≤  𝐻2 ≤  𝐻𝑟. 

Now we are in a position to introduce our two 

algorithms based on MCMC methods to find the 

optimum sample size. We rewrite this condition in 

terms of 𝑧𝑛̅̅ ̅ and show it by 𝐻𝑟. As in the case of 

frequentist regulator, obviously there are three cases 

to be considered. 

 

Two algorithms for sample size determination 

In this section we present the required algorithms to 

find the optimum sample size by maximizing the 

expected net benefit resulting from the trial. 

1. Set n=2. 

2. Generate samples 𝜎(𝑗) 
2 for j=1, 2, ..., N from 

equation (1). 

3. Generate a sequence of 𝛿(𝑗) for j=1, 2, ..., N 

from 𝑁(𝜇, 𝜎2𝜔) using the values of 𝜎(𝑗) 
2 obtained 

from the previous step. 

4. Using the fact that 𝑠(𝑛)
2 /𝜎2 has a chi-squared 

distribution with 2n-2 degrees of freedom 

generate n vectors of dimension N, 

(𝑠(𝑛,1)
2 , 𝑠(𝑛,2)

2 , … , 𝑠(𝑛,𝑁)
2 ). 

5. Generate values of (𝑧(𝑛,1)̅̅ ̅̅ ̅̅ ̅, 𝑧(𝑛,2)̅̅ ̅̅ ̅̅ ̅, … , 𝑧(𝑛,𝑁)̅̅ ̅̅ ̅̅ ̅ ) of 

the 𝑧(𝑛)̅̅ ̅̅ ̅ by sampling from 𝑁(𝛿,
2𝜎2

𝑛
) with values 

(𝛿(1), 𝛿(2), … , 𝛿(𝑁))  for 𝛿 and (𝜎(1)
2 , 𝜎(2)

2 , … , 𝜎(𝑁)
2 ) for 

𝜎2. 

6.  

6-1. Calculate value of ℎ𝑛 =  𝑧𝛼√(2𝜎2/𝑛), if the 

condition holds then calculation is continued, 

otherwise it will stop.  

6-2. In the case of a Bayesian regulator, repeat 

steps 2 to 5. 

7.  

7-1. If at any stage ℎ𝑛 <  𝑧(𝑛)̅̅ ̅̅ ̅ , then 𝜇′ and  a' will 

both be calculated using 𝑧(𝑛)̅̅ ̅̅ ̅. Otherwise, 

they are set to zero. 
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7-2. If 𝜇′ ≥  𝐿′ = 𝐿 + 1.5𝜏𝑟
′ , then continue the 

computation. 

8. Calculate values of 𝑙(𝑛,𝑗), 𝑗 = 1, 2, … , 𝑁, in order 

to calculate the total benefit for the public health and 

the commercial benefit functions using the following 

formulas, respectively: 

         2
, , ,1 ,, n  j n  j n   n  jl m z  s μ z  

      2
, , ,1,n  j n  j n  l m z  s  

The expected net benefit is calculated as follows: 

𝑟(𝑛) ≃ 𝑏
∑ 𝑙(𝑛,𝑗)

𝑁
𝑗=1

𝑁
− 𝑐𝑛 

9. Set n=n+1 and repeat steps 2-8.  

10. Obtain the optimal sample size with 

maximizing the expected net benefit  r (n). 

It should be noted here that another parameter of 

tsitetni is 𝑅(𝑛) =
𝑟(𝑛)

𝑀𝑏
 which is a sort of scaled 

benefit. 

Results and discussion 

In this section we present the results of performing 

MCMC to find the optimal sample size for some 

trials. Several programs have been written in R to 

maximize the expected net benefit functions. Different 

parameter values have been examined to discuss the 

sensitivity of the results to the parameter values. 

The sensitivity analysis is considered for both the 

cases with the frequentist regulator and the Bayesian 

regulatory authority. 

 

The Public Health Utility Function 

Here we assume that the regulator uses a frequentist 

approach for assessing the difference between the 

performances of two treatments. The results are 

shown in Table 1 and Fig3. 

If the variance increases then the sample size 

increases. The optimal sample size decreases with the 

increase in the cost of trial. The optimal sample size is 

also affected by the significance level. 

In other case we assume that the regulator uses a 

Bayesian approach. The minimum amount of 

improvement in the condition or L, is an important 

factor in determining the required sample. According 

to Table 3, we see that when L is increased then the 

optimal sample size is decreased. However, sample 

size decreases with the increase in cost. 

 

 

Figure 3. The impact of changes in the cost, prior variance and the 

significance level of statistical test on the sample size and the net benefit 

function for public health utility function (curves from top to bottom 

correspond to the rows of the Table 1). 
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Table 2. The optimal sample size for various parameter values 

 

 

 

Figure 4. The impact of changes in the cost, prior variance and the 

significance level of statistical test on the sample size and the net benefit 

function for commercial utility function (curves from top to bottom 

correspond to the rows of the Table 2 ). 

 

Table 3. The optimal sample size for various parameter values 

 
 

The commercial utility function 

In this section the problem of sample size 

determination for the case with a commercial utility 

function is considered. When a frequentist regulator 

exists the optimal sample size is affected by the cost 

of the trial and the size of the statistical test. 

With a Bayesian regulator, if we increase the prior 

variances of both the regulator and company, the 

optimal sample size is increased. Clearly any increase 

in cost will result in a decrease in sample size and 

consequently in the expected net benefit function. 

It should be noted here that for all the cases 

discussed in Tables 1, 2, 3 and 4, the following 

parameter values are assumed. The variations of 

objective function for various parameter values are 

shown in Figs. 3, 4, 5, and 6. 
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𝑏 = 2.5 × 104, 𝑔 = 32, 𝜔𝑟 = 1, 𝑔𝑟 = 5, 𝜇𝑟 = 0, 𝐴 = 1.5, 

 𝐵 = 2.5, 𝜔 = 0.25, 𝑀𝑏 = 5 × 106 

 

Figure 5. The impact of changes in the cost, prior variance and 

the significance level of statistical test on the sample size and the 

net benefit function for public health utility function (curves 

from top to bottom correspond to the rows of the Table 3). 

 

Table 4. The optimal sample size for various parameter values 

 

 

 

Figure 6. The impact of changes in the cost, prior variance and the 

significance level of statistical test on the sample size and the net 

benefit function for commercial utility function (curves from top to 

bottom correspond to the rows of the Table 4). 
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Conclusions 

The problem of sample size determination under 

specific conditions have been discussed by several 

authors (6, 10, 14). In this paper, their approach is 

extended to more general and realistic conditions. 

Data are assumed to come from a normal distribution 

with unknown mean and unknown variance. We also 

assume there is a regulator where his decision on 

whether to grant a license to the new treatment will 

affect the size of the trial and consequently on the 

benefit resulting from the trial. Both the frequentist 

and Bayesian regulatory authorities are considered. 

Using the Markov chain Monte Carlo methods, 

several computer programs are written in R to 

calculate the optimal sample sizes, for two utility 

functions named, the public health and commercial. 

The cods are available from authors. 
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