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Abstract 

A profile hidden Markov model (PHMM) is widely used in assigning protein sequences 

to protein families. In this model, the hidden states only depend on the previous hidden 

state and observations are independent given hidden states. In other words, in the PHMM, 

only the information of the left side of a hidden state is considered. However, it makes 

sense that considering the information of the both left and right sides of a hidden state can 

improve the assignment task. For this purpose, bidirectional profile hidden Markov model 

(BPHMM) can be used. Also, because of the evolutionary relationship between sequences 

in a protein family, the information of the corresponding amino acid in the preceding 

sequence of residues in the PHMM can be considered. For this purpose the hidden 

Markov random field on regular lattice (HMRFRL) is introduced. In a PHMM, the 

parameters are defined by the transition and emission probability matrices. The 

parameters are usually estimated using an EM (Expectation-Maximization) algorithm 

known as Baum-Welch algorithm. In this paper, the bidirectional Baum-Welch algorithm 

and theBaum-Welch algorithm on regular lattice are defined for estimating the parameters 

of the BPHMM and the HMRFRL respectively. We also compare the performance of 

common Baum-Welch algorithm, bidirectional Baum-Welch algorithm and the Baum-

Welch algorithm on regular lattice by applying them to the real top ten protein families 

from Pfam database. Results show that using the lattice model for sequence assignment 

increases the number of correctly assigned protein sequences to profiles compared to 

BPHMM . 

Keywords: Profile Hidden Markov Model, EM Algorithm, Bidirectional Baum-Welch 

Algorithm, Regular Lattice. 

Introduction 

A central problem in genomics is to determine 

functions of newly discovered proteins using the 

information contained in their amino acid 

sequences (Gribskov et al., 1987). The 

fundamental assumptions are that homologous 

protein sequences have similar functions and 

similar structures (Churchil1, 1989). Based on 

this assumption homologous sequences have 

been grouped into known protein families. There 

are many systematic methods that have been 

developed to assign sequences to protein families 

(Pearson and Sierk, 2005). One of the most 

important methods to recognize homologous 

sequences from a protein family is profile hidden 

Markov Models (PHMM) (Krogh et al.,1994). 

The PHMM uses hidden Markov model (HMM) 

to provide a better method for dealing with gaps 
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found in protein sequences (Rabiner, 1989). The 

PHMM is a representation of multiple sequence 

alignment of protein families in profiles. The five 

components of HMM are defined as follows 

(Eddy , 1998): 

States: a set of states:S={S1, S2, S3,..., SN} 

Emissions: a set of symbols that may be observed 

O= {O1,O2,...,OM} 

Transition probabilities: a matrix A which its 

entries represent the probability of transition from 

hidden state si to hidden state sj: 

𝑎𝑖(𝑗) = P(𝑆𝑡+1 = 𝑠𝑗|𝑆𝑡 = 𝑠𝑖), 1≤ i, j ≤ N 

Emission probabilities: a matrix B which its 

entries denote the probabilities of amino acid 

residue ok being emitted by state sj: 

bj(k) = P(𝑂𝑡=𝑜𝑘 |𝑆𝑡 = 𝑠𝑗),1 ≤j ≤ N,1≤ k ≤ M 

Initial state distribution: it is the probability that 

s_i is a start state: 

𝜋i = P(𝑆1=𝑠𝑖),1≤ i ≤ N 

In the PHMM it is assumed that the amino acid 

sequences are emitted from the hidden states. 

Note that the PHMM is specified as a triple 𝜆=( 

A, B, 𝜋) where A is the transition probability 

matrix, B is the emission probability matrix and 

𝜋 is the vector of initial values. The Baum-Welch 

algorithm which is a special type of EM, 

algorithm is used for estimating these parameters 

(Bilmes, 1998). In the Baum-Welch algorithm it 

is assumed that parameters are estimated based 

on the information of the left side of a hidden 

state. But it makes sense to assume that the 

performance of protein recognition and 

assignment to PHMM's can be improved by 

considering information of the both sides of a 

hidden state. We call this the bidirectional profile 

hidden Markov model (BPHMM). Following 

Aghdam (Aghdam et al., 2010), we use the 

Baum-Welch algorithm twice (from left to right 

and right to left) or the bidirectional Baum-Welch 

algorithm for estimating the parameters of 

BPHMM. 

Also, one of the major limitations in PHMM is 

the assumption that successive amino acid 

residues are independent (Rabiner, 1989). So, the 

probability of a protein sequence, is usually 

written as the product of probabilities of amino 

acid residues {O1, ..., OM}, i.e., 

P(O1, O2,..., OM)= ∏ P(𝑂𝑖)𝑖  

But in protein families it is assumed that protein 

sequences are descended from a common 

ancestor (Wang and Jiang, 1994). A Multiple 

sequence alignment (MSA) can be used to assess 

the shared evolutionary origins (Just, 2001). 

From the resulting MSA, the phylogenetic 

analysis can be conducted. Many progressive 

alignment programs use a guild tree, which is 

similar to the phylogenetic tree (see Felenstein , 

2004; Letunic and Bork, 2006). Using the MSA, 

the sequences in a protein family are arranged due 

to their order of evolution (Ortet and Bastein, 

2010). Based on this assumption the protein 

sequences in the final MSA are determined by the 

guild tree. So, the information of the 

corresponding amino acid in the preceding 

sequence in the PHMM can be considered. We 

call this model the hidden Markov random field 

on regular lattice (HMRFRL). So, Baum-Welch 

algorithm on regular lattice for estimating the 

parameters of HMRFRL is defined. It should be 

noted in the HMRFRL, not only the information 

of the left side of a hidden state, but also the 

information of corresponding amino acid located 

above the residue in a sequence of residues 

should be considered. 

In this paper, first both the PHMM and BPHMM 

are reviewed. Then the bidirectional Baum-

Welch algorithm and the Baum-Welch algorithm 

on regular lattice for estimating the parameters of 

the BPHMM and HMRFRL are introduced. The 

necessary preliminaries including notations and 

extensions are presented. We show how we may 

modify the existing Baum-Welch algorithm to be 

able to use a lattice framework. Finally, we 

compare the results of applying both algorithms 

on some real data from the Pfam database (Finn 

et al., 2010). 

Material And Method 
The PHMM And BPHMM 

The profile hidden Markov model (PHMM) is a 

useful method to determine distantly related 

proteins by sequence comparison (Gribskov et 
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al., 1987). The PHMM is a linear structure of 

three states Match (M), Delete (D), and Insert (I). 

The number of the states must be determined by 

using a MSA on a protein family. Here we 

assume that K is the number of match states in the 

PHMM. So the total number of states is 3K+3. A 

commonly used rule is to set K equal to the 

number of columns including more than half of 

the amino acid characters (Eddy, 1998). Twenty 

amino acids are observed from Match and Insert 

states. Delete, Begin and End states are silent 

states because they do not emit any symbols. 

Following Durbin et al. (2002), using the plan 7 

construction (Figure1), we estimate the transition 

probabilities, A, and the emission probabilities, 

B. This construction has no transitions from D to 

I, or from I to D. Figure 1 illustrates a typical 

PHMM. In order to improve the prediction 

accuracy of assigning a sequence to a PHMM, 

following Aghdam (Aghdam et al., 2010 ), we 

consider the information of the both sides of 

hidden states in the PHMM called bidirectional 

profile hidden Markov Model (BPHMM).As 

mentioned in section 1, in a PHMM, just the 

information of the left side of a hidden state 

e.g.ai(j) = P(St+1 = sj|St = si) is considered. 

So, for considering the information of the right 

side of a hidden state, the PHMM is 

conversed.These two PHMM can be integrated 

using a mixture density.Therefore in the 

BPHMM we have two PHMM and each of these 

PHMM has its own A and B matrices. The first 

PHMM is a Left to Right model (L-R-M) that 

considers the left to right transition between 

states in PHMM. The other PHMM is called (R-

L-M) since the right to left transitions among 

states is considered. As a result, for each 

sequence two probabilities under L-R-M and R-

L-M models are obtained. Using a mixture 

density, the probability of a sequence can be 

calculated by: 

P(O|λ)=q1P(O| λ L-R)+q2P(O| λ R-L), 

in which O denotes the sequence. q1 and q2 are 

nonnegative parameters which must be estimated 

by an iterative process. In this paper, the both q1 

and q2 are assumed to be equal to ½. However, 

other non-negative values for these parameters (a 

weighted average) could be also admissible.λ L-R 

and λ R-L indicate the parameters of L-R-M and 

R-L-M models, respectively. So, the Baum-

Welch algorithm is used twice for parameter 

estimation. 

Figure 1. The Plan 7 Construction 

The Bidirectional Baum-Welch Algorithm 

An important question in the PHMM construction 

is how to estimate values of its emission 

probabilities (B(3K+3)×20) and transition 

probabilities (A(3K+3) × (3K+3)). The Baum-Welch 

algorithm is usually used for estimating 

parameters of PHMM. The Baum-Welch 

algorithm defines an iterative procedure for 

estimation parameters that computes maximum 

likelihood estimators for the unknown parameters 

given observation (Blims , 1998). The algorithm 

finds λ*=argmaxλ L(λ;O) where λ 

=(A,B,π)denotes the parameters and O indicates 

the amino acid sequences in PHMM. The steps of 

Baum-Welch algorithm are as follows; 

(a) Define variable γt(i) as the probability of being 

in state si at time t, given the observation 

sequence O1 O2 ... Ot. 

γt(i)=P(St=si|O1O2...Ot) 

(b) Calculate 

ξt(i,j)=P(St=si,St+1=sj|O1O2...Ot) 

(c) Calculate the expected number of transitions 

from state si to state sj by ∑ ξt t(i,j) 

(d) Calculate the expected number of transitions 

out of state si by ∑ γt t(i) 

(e) Calculate the expected number of times that 

an observation ok occurs in state si by 

∑ γt.𝑜t=𝑜k t(i) 

(f) Calculate the expected frequency in state si at 

time t=1 by γ1(i) 
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Then the estimation of parameters can be found 

by: 

𝑎̂i(j) 

=
Expected number of transitions from state 𝑠𝑖to state 𝑠𝑗

Expected number of transitions out of state 𝑠𝑖
 

= 
∑ ξt t(i,j)

∑ γt t(i)
 

𝑏 ̂j(k) = 
Expected number of times observation 𝑜𝑘 occurs in state 𝑠𝑗

Expected number of transitions out of state 𝑠𝑗

 =
∑ γt.𝑜t=𝑜k

 t(j)

∑ γt t(j)
 

𝜋̂i = Expected frequency of state siattime 

t=1)=γ1(i). 

Since the Baum-Welch algorithm finds local 

optima, it is important to choose initial 

parameters carefully. In this paper we perform the 

algorithm with different initial parameters in a 

way that the transition probabilities into Match 

states are larger than transition probabilities into 

other states.In BPHMM, the Baum-Welch 

algorithm is used twice for estimating the 

parameters. So, using a mixture density, the 

Baum-Welch algorithm can be defined as a 

Bidirectional Baum-Welch algorithm. 

The Baum-Welch Algorithm On Regular 

Lattice 

In a PHMM, only the information on the previous 

state of a hidden state is considered. However, in 

a protein family, based on the construction of 

protein family, the input set of query sequences is 

assumed to have an evolutionary relationship, by 

which they are descended from a common 

ancestor. Therefore, we propose a model which 

considers the effect of the evolutionary 

information in a sequence of amino acids, as well 

as the effect of the hidden state on the previous 

state of an amino acid. This model is a special 

case of a discrete state hidden Markov random 

field, with one point neighborhood on the lattice. 

This describes a special case of first order 

neighborhood structure. So, we can extend this 

model for higher order neighborhood structure 

e.g. a six-regular lattice with considering the 

following equation introduced by Besag (1974) 

on a regular lattice: 

 

 

where njrc is the number of sites with jth 

observations neighboring site (r,c),uiand vi are 

parameters and isone of the  amino 

acids residue (multinomial data) in site (r,c). On 

a regular lattice the neighbors of the site with 

coordinates (r,c) can be denoted by {(r - 1, c), (r 

+ 1, c),(r, c - 1),(r, c+1),(r+1,c+1), (r-1,c-1)}. This 

can be considered as six-regular lattice (see 

Rezaei et al, 2013). 

In this section, for introducing the Baum-Welch 

algorithm on regular lattice, we need to define a 

new emission probability matrix by considering 

the information of the corresponding amino acid 

in the preceding sequence in the multiple 

sequence alignment (MSA). The MSA is a 

sequence alignment of three or more biological 

sequences such as protein, DNA, or RNA. 

Typically it is implied that the set of sequences 

share an evolutionary relationship, which means 

they are all descendants from a common ancestor. 

So, there is a relationship between phylogenies 

and the MSA. Phylogenetic is an area of research 

concerned with finding the genetic relationships 

between various organisms based on 

evolutionary relationship (Della Vedova, 2000). 

So, for considering the information of above 

amino acids, after performing an MSA on a 

protein family, we assume the protein sequences 

consisting of 21 observations (20 amino acids and 

one gap), are arranged in a regular lattice grid as 

shown by Figure 2. 

So, the MSA matrix with R rows (the number of 

sequences) and C columns is obtained (MSAR×C). 

In other words, each amino acid is arranged as a 

site. This matrix is called the MSA matrix, in 

which the site above the (r, c) is denoted by (r – 

1, c). Hence, we assume each site on the lattice 

has a dependency with the above residue. Using 

the MSA matrix, we want to build a new emission 

probability matrix in which the size of this matrix 

must be the same as the emission probability 

matrix with 3K+3 rows and 20 columns. So, the 

estimation method for the new emission 

probability matrix, shown by β(3K+3)×20, is as 

follows: 

The frequencies of ordered pairs of 20 amino 

)( ,crsz m

,,...,2,1,0,

)exp(1

)exp(
)|)((

1

, sj

nu

nu
othersitesjszp

s

i

ircii

jrcjj

cr 















 

18 

Baum-Welch Algorithm 

acids and one gap, i.e., (Or-1,c,Or,c) in each column 

of MSA matrix are counted. In other words, in 

each column, for a given amino acid Or,c (20 

amino acids), the position (r-1,c) can be filled 

with any of 20 types of amino acids or one gap 

(21 observations). So we have a 420 (20× 21) by 

C matrix. Dividing these frequencies by the sum 

of frequencies in each column the probabilities 

are estimated as follows: 

𝛽̂i(j)=𝑃̂(Or-1,c=oj|Or,c=oi) = 
P̂(𝑂r−1,c=𝑜j,𝑂r,c=𝑜𝑖) 

∑j P̂(𝑂r−1,c=𝑜𝑗 ,𝑂r,c=𝑜𝑖)
 

1≤ j ≤ 21, 1 ≤i ≤ 20 

Figure 2. Regular Lattice 

This step provides us with the matrix 𝛽̂420×C. 

Maximum likelihood estimators are frequently 

used to estimate parameters of a distribution. That 

is to find the parameters which makes the 

probability (or the chance of) observing data 

maximum.In the first step of construction of 

matrix β̂ the matrix β̂420×C is obtained. So, the 

highest probability for a given amino acid Or,c, 

should be chosen so that the matrix β̂420×C is 

changed to matrix β̂20×C. 

In each column of matrix 𝛽̂420×C, the highest 

probability for a given amino acid Or,c, should be 

chosen. In other words, in each column, the 

highest probability for each set of 21 amino acids 

or gap is chosen. Then the matrix 𝛽̂420×C is 

changed to matrix 𝛽̂20×C. 

Transposing the matrix 𝛽̂20× C , the matrix 𝛽̂C× 20is 

obtained. Because we want to build a new 

emission probability matrix, we have to change 

the matrix 𝛽̂C×20 to matrix 𝛽̂(3K+3)×20. For this 

purpose, we assume that the C rows consisting of 

Match and Insert states in which each Insert state 

can be repeated many times ( Figure 1). In other 

words, the Match states in 𝛽̂C×20 are 

corresponding to Match states in 𝐵̂(3K+3)×20 and the 

rows are between two Match states in βC×20 

corresponding to Insert states in𝐵̂(3K+3)×20. 

In the matrix 𝛽̂C×20, each row that is a Match state 

should be chosen and the average values of Insert 

rows between two Match states are calculated. 

So, we have 2K Match and Insert states. 

We add Delete state by using zero, so that 3K 

states are obtained. The average value of those 

rows which are before the M1 is considered as I0 

state. Then the matrix 𝛽̂C×20 is changed to the 

matrix 𝛽̂(3K+1)×20 with 3K+1 Match, Insert and 

Delete states in rows. We add two zero rows to 

the 𝛽̂(3K+1)×20 as the Begin and the End states to 

obtain the matrix 𝛽̂(3K+3)×20. 

Therefore, the likelihood of parameters on a 

regular lattice is defined by: 

L(λ;O) = ∑ P(O|S, λ)P(S|λ)
𝑠

= ∑𝑠 ∏𝑟,𝑐  

P(Or,c|Sr,c,Or-1,c)P(Sr,c|Sr,c-1) 

= ∑𝑠 ∏𝑟,𝑐
P(𝑆r,cOr−1,c| Or,c ) P(Or,c ) 

 P(𝑆r,cOr−1,c)
 × 

P(Sr,c|Sr,c-1) 

= ∑𝑠 ∏𝑟,𝑐
P( Or,c | 𝑆r,c) P(Or−1,c|Or,c) 

 P(Or−1,c)
 × 

P(Sr,c|Sr,c-1) 

= 

∑𝑠 ∏𝑜𝑖,𝑜𝑗,𝑠𝑖,𝑠𝑗

 P(Or,c= oj | 𝑆r,c= 𝑠i) P(Or−1,c= 𝑜i |Or,c= 𝑜j)

0.048
 

× P(Sr,c= si |Sr,c-1= sj) 

= ∑𝑠 ∏𝑖,𝑗
bi(𝑗)β𝑗(𝑖)

0.048
× 𝑎𝑗(𝑖) πi(1) 

where Sr,c and Or-1,c are independent, because 

Sr,cjust emits Or,c. It should be noted that, in 

Equation (1), P(Sr,c) and P(Or,c) on rectangular 

lattice have the same meaning as P(St)$ and 

P(Ot).Because there are 21 observations (20 

amino acids and one gap), the P(Or-1,c) is assumed 

to be equal to 1/21=0.048. Also the βj(i)'s are the 

elements of matrix β(3K+3)×20. 
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The term 
 bi(j)βj(i)

0.048
is considered as an element of 

emission probability matrix on regular lattice 

(ERL): 

ERL(i,j)= 
 P(𝑂r,c=𝑜𝑗|𝑆r,c =𝑠𝑖,𝑂r−1,c =𝑜𝑖) 

0.048
. 

In other words we define the estimation of 

emission matrixon regular lattice (ERL) that is 

the entry-wise product (Hadamard product) of 

𝛽̂(3K+3)×20 and𝐵̂(3K+3)×20 and divide the entries by 

0.048 as follows: 

𝐸𝑅𝐿̂ (3K+3)×20 = 
𝛽̂(3K+3)× 20× 𝐵̂(3K+3)×20

0.048
 

where the ".*" is the sign of Hadamard product. 

Using the ERL (3K+3)×20 in common Baum-Welch 

algorithm instead of and B(3K+3)×20, the Baum-

Welch algorithm on regular lattice is obtained. 

Applying the Bidirectional Baum-Welch 

algorithm and Baum-Welch Algorithm on 

Regular Lattice to Real Data 

In the last decades, systematic methods have been 

developed to assign sequence to protein families. 

Based on multiple sequence alignment (MSA) of 

protein family sequences, profile methods have 

been introduced to search databases for 

homologous sequences. The Pfam (Finn , 2010) 

is a high quality set of annotated multiple 

alignment and pre-built profile HMM (PHMM). 

It is widely used to align new protein sequences 

on the known proteins of a given family or to 

recognize new member of a protein family. For 

each protein domain family in Pfam, there is a 

seed alignment which is a manually verified 

multiple alignment of a representative set of 

sequences. The Pfam database contains 11912 

families (Release 24.0, October 2009). There are 

two components in Pfam: Pfam-A and Pfam-B. 

The Pfam-A entries have high quality. Given a 

PHMM in Pfam and a protein sequence, one can 

compute the probability that this protein being 

generated by the PHMM and infer the family that 

the new protein belongs to. For this purpose, the 

parameters of PHMM using Baum-Welch 

algorithm should be estimated. In this paper, 

using both the bidirectional Baum-Welch and the 

Baum-Welch algorithm on regular lattice, 

parameters (emission and transition matrices) are 

estimated and protein sequences are assigned to 

protein families. As shown in Table 1, we select 

and use ten families from top twenty protein 

families of Pfam-A for assignment protein 

sequences to protein families.

 

Table 1. Top ten protein families from the Pfam database 

ID Accession 
Number of Sequences 

Seed Full 

RVT_1 PF00078 155 126258 

WD40 PF00400 1842 101999 

RVP PF00077 50 93675 

Cytochrom_B_N PF00033 92 70463 

HATPase_c PF02518 662 70410 

BPD_transp_1 PF00528 81 70027 

Oxidored_q1 PF00361 33 60333 

Pkinase PF00069 54 56691 

adh_short PF00106 230 50144 

Acetyltransf_1 PF00583 243 46279 
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Results And Discussion 

To assess the performance of our method, ten 

sequences from each ten families are randomly 

removed.We repeat this procedure10 

times.Therefore, each time we have selected 100 

sequences. So, in total 1000 sequences are 

randomly removed. Then each time we estimate 

the transition Matrix (A(3K+3) × (3K+3)) and the 

emission matrix(B(3K+3)×20) and β(3K+3)× 20 for each 

family.Therefore the estimation of parameters of 

BPHMM are obtained. It should be noted, the 

results of applying bidirectional Baum-Welch 

algorithm (BBWA) are compared with the results 

of Baum-Welch algorithm on regular lattice 

(BWARL) and common Baum-Welch algorithm 

(CBWA). In this paper due to computational 

challenges and round-off errors in estimating 

parameters, we selected just ten sequences from 

each family and used the .Net Framework which 

is a software framework that runs primarily on 

Microsoft Windows. In this framework the 

source codes of Matlab software is combined 

with codes of .Net. 

Given ten protein families, the 1000 removed 

sequences are added to all families and the scores 

of the sequences belonging to each family based 

on values of estimations are computed and 

compared. To score a sequence and assign it to 

one of the top ten profiles, we use the log-odds 

score. It is defined by 

𝑙𝑜𝑔2

prob

null − prob 
 

whereprob is the probability of sequence based 

on parameter estimation and null-prob is 

equivalent (0.05) (lengofsequence). Since there are 20 

amino acids, then the probability of random 

occurrence of each of them is 0.05 and then for a 

sequence of L amino acids the probability of 

random occurrence is (0.05) L. The mean of the 

numbers of correctly assigned proteins to the top 

ten protein families are shown in Table 2. Based 

on the results shown in Table 2, the mean of 

correct assignment of sequences to the protein 

families usingBaum-Welch algorithm on regular 

latticeare increased in all cases.Since the Baum-

Welch algorithm finds local optima, it is 

important to choose initial parameters 

carefully.So, the number of assigning sequences 

to original profile can be increased by choosing 

proper values of the initial transition and 

emission probability matrices. In addition to the 

number of correctly assigned sequences, the 

mean of normalized scores for each ten removed 

sequences in most families (8 families), using 

Baum-Welch algorithm on regular lattice, are 

more than those obtained by bidirectional Baum-

Welch algorithm (Figure 3). Note that after 

calculating each score based on each algorithm, 

the average value of scores corresponding to each 

family are calculated. Then they are normalized. 

Therefore based on each algorithm the scores are 

different together.

Table 2. The Mean of the Numbers of Protein Sequences Assigned Correctly. 

ID Using CBWA Using BBWA Using BWARL 

RVT_1 9.010 9.125 9.463 

WD40 7.557 7.889 8.610 

RVP 5.614 6.015 7.808 

Cytochrom_B_N 6.896 7.986 8.929 

HATPase_c 7.523 7.125 8.981 

BPD_transp_1 6.004 7.278 7.941 

Oxidored_q1 8.052 8.781 8.878 

Pkinase 1.034 2.107 6.334 

adh_short 5.998 6.000 7.589 

Acetyltransf_1 8.525 8.264 8.536 
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Not surprisingly, when we use more information 

due to evolutionary relationship between 

sequences, the results get better.

 

Figure 3. The Mean of Normalized Scores for each of the Ten Removed Sequences of Each Family Using BBWA and 

BWARL.
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